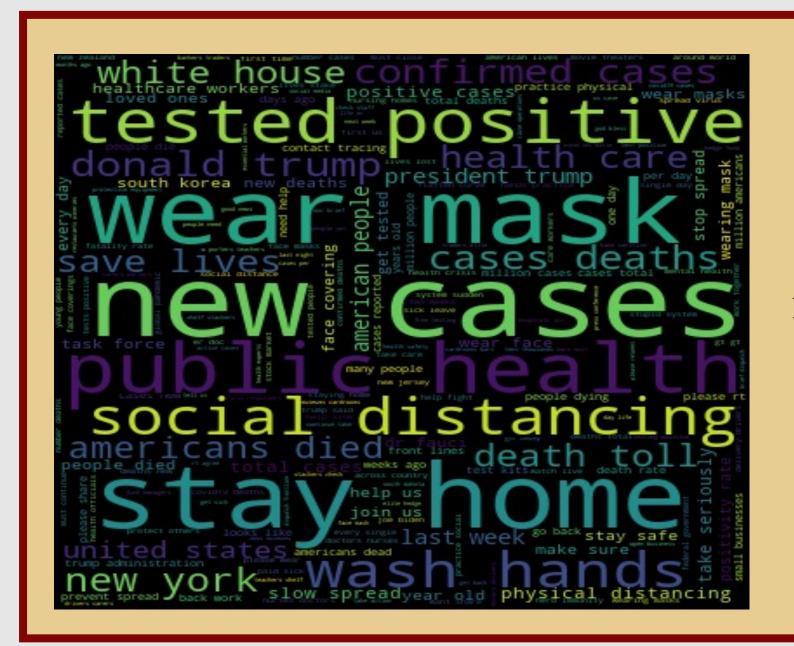

Using Machine Learning to Track Emotional Responses to COVID-19 through Social Media Data Miranda Phillips and Dr. Prasad Maddumage

	Introduction
•	 COVID-19 has shifted the Twitter emotional landscape. Machine Learning (ML), can be used to find the emotional responses of individuals regarding COVID-1 through public tweets. Community responses and emotions regarding major events can be influential when forming public policies and disaster relief plans. This project provides information that would be beneficial to community leaders in times of crisis. It can be used for other major events aside from the Coronavirus pandemic.
	Methods
	 Obtained public tweets with the hashtags #Coronavirus, #Coronaoutbreak, and #COVID19 between March and December 2020 Clean the data: Create labels for emojis Remove special characters and @usernames Retain only English tweets from the US Hand label randomly selected set of tweets (7500 tweets with one of the chosen emotions or as neutral Happy(h), anger(h), sad(s), surprise(u), or worry(w) Use hand labeled tweets to train multiple models Use the best model to analyze unlabeled tweets and find aggregate emotional responses per day Deep Neural Network (DNN) with 512 nodes and 5 layers was used as an additional model.
	400000 350000 300000 250000 250000 150000 50000

Fig. 2 No. of COVID-19 tweets per week (Mar – Dec 2020)


Mar 08 2020 -Mar 28 2020 -Apr 17 2020 -May 27 2020 -Jul 06 2020 -Jul 26 2020 -Jul 26 2020 -Sep 04 2020 -Oct 15 2020 -Oct 15 2020 -Nov 04 2020 -

Florida State University Research Computing Center

Fig. 4 Confus	ion Matrix					1. Boiledfishpot. (2020, July 27). Tw
Predicted True	h	a	S	u	W	 <u>https://www.kaggle.com/boiledfisl</u> Hasan, M., Rundensteiner, E., Agi
h	56.93	2.34	7.20	4.65	8.93	Twitter Messages [Conference Ses
a	2.52	72.40	5.05	0.00	4.93	 Conference, Stanford University, I Kerchner, D., Wrubel, L. (2020). C
S	7.66	8.85	61.87	0.00	15.81	https://dataverse.harvard.edu/datas
u	5.08	4.95	2.80	86.05	5.50	4. Mohammad, S. M., Kiritchenko, S. <i>Study Interactions between Affect</i>
W	11.59	9.64	16.92	6.98	45.59	Canada. <u>https://www.saifmohamm</u>

The number of COVID-19 related tweets was the highest in March 2020 and decreased through November 2020 (Fig. 2). During our preliminary analysis, we identified the most common two-word phrases (bigrams) in the tweets as shown in the word cloud (Fig. 1). Bigrams show how the main concerns change over time. It was found that most COVID-19 tweets portrayed surprise and anger. A confusion matrix was created to illustrate the accuracy of the model. The accuracy of individual emotions was lowest for 'worry' (45%) and highest for surprise (86%) (Fig. 4). This emotional analysis ML model can be used for other projects as it is applicable to any topic and any sample size of tweets. A random sample of tweets prior to 2020 showed happy was the predominant emotion (33%) among tweets with 12% anger and 5% surprise Multiple emotions in one tweet, sarcasm, and slang words have a major role in decreasing the overall accuracy of this Machine Learning model.

This project was supported by FSU's Research Computing Center, a High-Performance Computing Facility, and FSU's Undergraduate Research Opportunities Program (UROP). I would like to give a special thanks to the RCC Director, Dr. Paul van der Mark, for providing me with this opportunity and for encouraging me to share our research in multiple settings.

Discussion

Fig. 1 Most used bigrams in tweets regarding COVID-19, enlarged based on frequency (Mar – Dec 2020)

Acknowledgements

References

vitter Classify by BERTweet. Kaggle. hpot/twitter-classify-by-bertweet gu, E. (2014, May 27-31). EMOTEX: Detecting Emotions in ssion]. 2014 ASE BIGDATA/SOCIALCOM/CYBERSECURITY Palo Alto, CA, United States. Coronavirus Tweet Ids. GWU Libraries Dataverse. set.xhtml?persistentId=doi:10.7910/DVN/LW0BTB S. (2018, May). Understanding Emotions: A Dataset of Tweets to Categories [PowerPoint slides]. National Research Council

nad.com/WebDocs/LREC2018-tweet-emo-talk.pdf