Lesson	Maggie	School	Bay District Schools	Lesson Title	Elastic Energy System
Designer Name	Wentworth	Grade Course	6 th Grade Science		3 Day Lesson

BIG IDEA	FLORIDA BENCHMARKS
	SC.6.P.11.1: Explore the Law of Conservation of Energy by differentiating between potential and kinetic energy. Identify
	situations where kinetic energy is transformed into potential energy and vice versa. Cognitive Complexity: Level 2: Basic Application of Skills & Concepts
	LACC.68.RST.1.3: Follow precisely a multistep procedure when carrying out experiments, taking measurements, or
	performing technical tasks. Cognitive Complexity: Level 2: Basic Application of Skills &
	Concepts I Date Adopted or Revised: 12/10 Belongs to: <u>Key Ideas and Details</u>
	LACC.68.WHST.1.2: Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes.
	Introduce a topic clearly, previewing what is to follow; organ ideas, concepts, and information into broader categories as appropriate to achieving purpose; include formatting (e.g., headings), graphics (e.g., charts, tables), and multimedia when useful to aiding comprehension. Develop the topic with relevant, well-chosen facts, definition concrete details, quotations, or other information and examples.
	Use appropriate and varied transitions to create cohesion at clarify the relationships among ideas and concepts. Use precise language and domain-specific vocabulary to inform about or explain the topic. Establish and maintain a formal style and objective tone. Provide a concluding statement or section that follows from and supports the information or explanation presented.
	Cognitive Complexity: Level 3: Strategic Thinking & Complex Reasoning I Date Adopted or Revised: 12/10 Belongs to: <u>Text Types and Purposes</u>
	MACC.6.SP.2.4: Display numerical data in plots on a number line, including dot plots, histograms, and box plots.
	Cognitive Complexity: Level 2: Basic Application of Skills & Concepts I Date Adopted or Revised: 12/10

ENDURING UNDERSTANDING

The Law of Conservation of Energy: Energy is conserved as it transfers from one object to another and from one form to another. The amount of potential energy determines the available energy that can convert to kinetic energy. By increasing or decreasing the amount of potential energy, kinetic energy can be changed. Other variables can cause changes in motion as well.

PRIOR KNOWLEDGE

Energy is the ability to do work or cause change. Motion is the evidence of kinetic energy. Kinetic energy is energy of motion, while potential energy is stored energy.

The law of conservation of energy states that energy cannot be created nor destroyed.

Energy can be transformed into a new form.

Potential energy can be transformed into kinetic energy and kinetic energy can be transformed into potential energy.

Gravitational potential energy can transfer to kinetic energy.

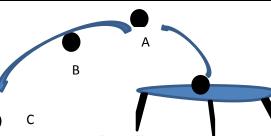
SKILL/KNOWLEDGE ACQUISITION

Students will be able to predict kinetic energy changes resulting from decreased or increased potential energy.

Students will describe how energy changes form but is not lost.

Students will be able to identify variables in an elastic energy system.

Students will be able to design an elastic energy system that controls projectile motion.


MISCONCEPTION(S)

Elastic energy cannot be transformed into motion energy (AAAS Project 2061, n.d.)

Energy can be created (Kruger, 1990; Lovrude, 2004; Papadouris et al., 2008)

Springs or other elastic objects have the same amount of elastic energy regardless of how much they are stretched or compressed (AAAS Project 2061, n.d.)

Summative Assessment Target Question

If a bowling ball is dropped onto a trampoline and flies off onto the ground, at what point has all the potential energy been converted to kinetic energy?

a. At the top.

		 b. In the middle c. At the bottom 						
		d. It never has 100% because energy is lost as it goes down. Explain your answer.						
		CONCEPT SKILL: Transfer Question						
		If a ball is dropped from half height as before (instead of from the same height) onto the trampoline, then it will have enough kinetic energy to go:						
		it will have enough kinetic energy to go: a) the same distance;						
		b) half as far as from the top;						
		c) farther;						
		d) not enough information to determine the distance. Explain your answer.						
		READING INFORMATIONAL TEXT: Day 1: 45 minutes Small group read/discuss and answer comprehension questions. (Peer support for struggling readers.)						
		ENGAGE THE STUDENT Day 2: 10 minutes MATERIALS/EQUIPMENT						
		Teacher demonstrates the elastic energy system by	 Two full straws One straw piece 					
		shooting the projectile across the room.	3. masking tape					
		The teacher asks, what caused the projectile to fly across	 toilet paper tube rubber band 					
		the room? (energy)	 6. protractor 7. brad fastener 					
		What kind of energy is used in this system? (elastic)	8. ruler					
NO	(If prompting necessary) Was it gravitational potential	9. trash cans						
0	LESSON	energy? (no) What kind? What is a word for stretchy?	(See actual picture of setup in attached document)					
=]	(elastic)	10. SAFETY GOGGLES					
		When the projectile flies, what kind of energy does it have? (kinetic)						
		Can you make an energy system with elastic potential						
		energy that shoots a projectile across the room?						
		FORMATIVE ASSESSMENT	Group discussion questions:					

	ng questions during Inquiry activity:	(After small group discussion, answers are written in individual journals, Day 3.)		
(Teache	r asks these probing questions while visiting each group Day 2.)			
1.	What can you do if it flies too far?	Jou	ırnals:	
3.	Why does that work? What can you do if it doesn't fly far enough? Why does that work?	1.	What created potential energy in this system?	
	Is there any way to change the distance it flies without changing the stretch of the rubber band?	2.	When did you observe kinetic energy in this system?	
	Explain.	3.	How did you increase and decrease kinetic energy in this system?	
		4.	Did the projectile go farther if the rubber band was stretched farther?	
		5.	What variables did you identify?	
		6.	What variables did you change to make your projectile go even farther?	
		7.	How did you adjust variables to make your projectile go less far?	
		8.	How does elastic potential energy affect the projectile motion?	
			a. Draw an example(s)	
		9.	How does angle of launch affect the projectile motion?	
			a. Draw an example(s)	
		10.	Were you able to control the kinetic energy by changing variables?	
		11.	Could you increase distance traveled without increasing	

				potenti	al energy? How?
INQU	IRY ACTIVITY	Days 2 & 3 3	0 minutes	MATERIALS	NEEDED
	DURE: : What prod nsistently (at least 3		e projectile in the		Launcher: Toilet pape tube with
(You h	ave 15 minutes to s	olve the problem.)			rubber ban around it
1.	Build the launcher	(toilet paper tube,	rubber band)		
2.	Build the projecti tape)	ile (2 straws, strav	w piece, masking	F	Projectile:
3.	Place the can 1 me	eter from the launcl	n site	9	Masking tape around two straws with
4.	Place projectile omeasure angle	on launcher using	a protractor to		straws with straw piece between
5.	Set the launch ang	le and the stretch o	listance		-
6.	Test the launche distance, cm; reco	-	ngle and stretch		
7.	Measure the dista	nce of the projectile	e; record result:		
	X or 🙄;describe	observation (too fa	r; not far enough)	5 2 2	
8.	Revise the proced	ure and retest		(CL)	
9.	Measure the dista	nce of the projectile	e; record	MIK	
10.	Continue to revise can three times in	-	projectile hits the		
11.	As an exit ticket, challenge (the pro	write your group' cedure) on an inde			
12.	Clean up your wor	k space.			
	Day 3: Continue t	he Inquiry Activity			
	(You have 15 minu	ites)			
13.	Test the procedur the card:	e of another group	o and respond on		
14.	X Does NOT hit th	e can; 🙂 Hit the c	an!		

	After your group's discus journal, share your challer explaining how you reach (the procedure).	nge solutior	5			
ANAL	YSIS Day	⁷ 3: 15	minutes	MATERIALS NEEDED		
	۔ ۲A ANALYSIS: (You have 1	IE minutos	to record and	CANADIE Data Table for coeffeiding		
	lyze the class data independ			SAMPLE Data Table for scaffolding (see attached Lesson Activity Sheet)		
	Graph the data of the solu nce journal:					
	NDENT ANALYSIS: Answe ndently in your journal using		owing questions ata.			
1.	Which group(s) found a solu	ution to the	problem?			
2.	Were all solutions the same	?				
	Was any of the potentia demonstration? Explain.	al energy	lost during the			
	How would you evaluate efficient solution to the pro		mine the most			
	Hint: Consider the product cost factor, such as the cost	•	•••			
	What relationship does kinetic energy? (Write 4 tru conclusions you have made	e statemen				
6.	What further testing would (Ideas should be stated as questions.)	you like to				
COI	NCLUDING ACTIVITY	Day 3:	10 minutes	MATERIALS NEEDED	_	

CONCLUSION	Volunteers share with class their answers to the Independent Analysis Questions. (This helps scaffold struggling writers, modeling for them how to verbalize their thoughts. How does this apply to the REAL WORLD? Do scientists ever have to control motion of a projectile? (launch of space ships; military missils;)	Journals
	Modifications and Differentiation	
MODIFICATIONS	 Struggling students are grouped together for inquiry activity and will answer only group questions 1, 2, 3, 4, 8, & 9; plus they will be given a data table to use; while other groups must answer all group questions and create their own data table. (This encourages participation and not just passive involvement due to lack of confidence by the struggling students.) Advanced students will be grouped together and asked to write a predicted procedure for hitting the trash can if it is moved 1 meter forward, basing this only on their test data without any further testing. Predict the procedure for hitting it if it is moved ½ meter closer. 	Condensed Group Questions (1, 2, 3, 4, 8, & 9); Data (Table provided as needed for differentiation.)